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THE PROBLEM

The shimmering effects of atmospheric turbulence are familiar to anyone who has looked
across the room through the air rising from a hot radiator; or at a distant object across a
desert in the summertime. The image appears to be randomly distorted and broken up
into characteristic ‘speckles’. This is a real effect, not an optical illusion, so that any
picture taken through the turbulence with a camera will suffer the same problem. We
have studied how to reduce these turbulence effects on such camera images after they are
taken. A special-purpose digital processing algorithm is used called the ‘image division’
method. :

BASIC ALGORITHM

The processing approach is based upon the use of two short-exposure images, ie. with
exposure times the order of .01s or less. Also, the images are taken so far apart in time as
to ‘sec’ independent turbulence distributions in the optical pupil of the camera. The two
images are Fourier transformed, and these are divided one by the other (thus, ‘image
division’). This produces the basic data D,, n = 1,...,N where N is the number of
frequencies. The data relate to the two unknown PSFs (point spread functions) a5,
via Eq. (12) of Ref. [1]. (Note: See first a? ndix at end of report.) These are solved
for, along with the two object estimates o4'/,0,7’ via the recursive algorithm shown in
Fig. 1 of Ref. [2] (second appendix at end of report).

TESTS OF THE ALGORITHM
The algorithm has been extensively tested on computer simulations [2]. More recently, it

has been tested on infrared imagery provided by Kitt Peak National Observatory (K.
Hege, J.Garcia). All results are positive. The method works.
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We have just obtained stellar speckle imagery from the Univ. of New Mexico, and are
about to test the algorithm on this as well

An interesting result of these tests is that the ‘tails’ of the image contain significant
information about the unknown PSFs. Hence the imagery must not be spatially truncated
while stillat significant values above background. If these are missing, the algorithm is
misled into ‘thinking’ that there is a missing source located somewhere outside the
truncated field. Hence it does not converge.

CONCLUSIONS

The image division method is a working method for effectively and speedily reducing the
effects of random turbulence upon given images. All processing may be done on a
personal computer (as was the case for the testing above). No large mainframe computer
is needed. The algorithm could conceivably be implemented via computer chip in a
hand-held ‘smart’ camera. The camera simply takes two successive images through the
turbulence each time the shutter is activated. The two images are then processed by the
image division algorithm. An FFT (Fast Fourier transform) chip can be used to
implement all needed Fourier transforms, and the output image digitally viewed on a

iquid crystal display.

Another possibly useful feature of the approach is an outgrowth of finding the two PSFs.
These should give information about the presence of wind shear. High winds ought to
cause highly speckled PSFs. Hence the approach could potentially be used to search for
wind shear conditions along an imaging path. Since the approach is passive, not
requiring active probes such as via lidar or radar, it is simple, cheap and robust. Further
testing can ascertain how effective it is versus these active approaches.
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Abstract

We show how, in principle, to solve the *blind deconvolution® problem. This is in the context of the problem of imaging
through atmospheric turbulence. The approach is digital but not iterative, and requires as input data but two short-exposure
intensity images, without the need for reference point sources. By taking the Fourier transform of each image and dividing, a
set of linear equations is generated whose unknowns are sampled values of the two random point spread functions that
degraded the images. An oversampling by 50% in Fourier space equalizes the number of unknowns and independent
equations. With some prior knowledge of spread function support, and in the absence of added noise of image detection, the
inverted equations give exact solutions. The two observed images are then inverse filtered to reconstruct the object. © 1998

Elsevier Science B.V. All rights reserved.

1. Introduction

We first review image sampling theory as it will be
used in the processing approach. A knowledge of the
fundamentals of incoherent image formation as described,
e.g. in Ref. [1), is assumed. For simplicity, we use one-di-
mensional notation. The theory is trivially extended to two
dimensions (e.g. replacing all one-dimensional Fourier
sums and integrals with their two-dimensional counter-
parts). The simulations at the end are two dimensional, as
are real images. :

2. Sampling theorems

Consider an incoherent object of limited extension 2 x,,.
This has an intensity profile o{x), with x the position
coordinate, and :

o(x) =0 forlxl2x,. ¢))
The object is imaged, via a turbulent atmosphere, through

* E-mail: friedenr@super.arizona edu

a lens system. Although the image i(x) has, theoretically,
infinite extension, in practice it has finite extension, since
beyond a finite position all intensity values are insignifi-
cantly small. For convenience, we place it along the
positive x-axis, as shown in Fig. 1. The Fourier transform
of the image, the spectrum /(w), is sketched on the right
(spatial frequeacy w is in units of radians/length). For
simplicity, only the real part of /(w) is shown. Note the
cutoff for positive and negative frequencies at + f2.

The relation between i(x) and I(w) is, of course,

I(w)-j:dxi(x)e"-""‘, j=V=1, -Q<w<0.

2
As is well known, the finite cutoff frequency {2 allows us
to use, with negligible error, a discrete sum
M-1

o)=Y Axi(mAx)e™*2: —Ngsws<, (3)
m=0 .

where

Ax=m/02, )

in place of the integral form Eq. (2). Quantity A x is called
the sampling interval, since it is the constant spacing

00303018 /98,/519.00 © 1998 Elsevier Science B.V. All rights reserved.
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i(x)

I{w)

0 x

-0 -0 Q ©

Fig. 1. Image i(x) and its spectrum /(w) (real part shown).

between sampled image values i(mAx),m=0,1,....M
-1

Because of the discrete nature of the sum in Eq. (3) the
spectrum replicates periodically, Nw+ )= w), as
shown in Fig. 2. Note that the interval R contains all of
the spectral curve /(w), albeit in a rearranged order (i.c.
first the positive portion, then the negative portion). This
permits us to use, then, as the spectrum

M-t

w)= Y Axie™*m* | =i(mAx),

m=0

0sws20, )

in place of Eg. (3).

The computed spectrum via Eq. (5) can, in principle, be
evaluated at a continuum of frequency values over the
given interval. But, for computational purposes, we evalu-
ate it at a fine, discrete subdivision

2n
w,=—(, n=01,... . N—-1. (6)

N
These discrete values all lie within the interval (0,212)
prescribed in Eq. (5). The size of N governs the fineness
of the frequency sampling. Notice that N can, in fact, be
taken as large as is desired. We use this fact in the
processing method below.

By Egs. (4) and (6), the exponent in Eq. (5) becomes

o mA 'Znnmﬂ' 27 jmn 7
joumbx == B = = )
I{w)
‘\ l’
-Q 0 Q 20 ©
e mem—m—— Re==-

Fig. 2. Replicated image spectrum.

Then the sampled Eq. (5) becomes

M-
Kw)=l,=Ax Y i e 2™m™/¥ nm=Ql,.. N=1

m=0
®)

This is in the form of a discrete Fourier transform (DFT),
but with a difference: there is a generally different number
N of output values in frequency space than the M input
values in direct space. Our ‘division method’ of turbulence
processing, developed below, hinges upon the use of cases -
where N> M by appreciable amounts. -

3. Image turbulence problem

We now describe, in’ detail, the image turbulence prob-
lem [2-4] at hand. Consider a single object that is imaged
twice in succession through random atmospheric turbu-
lence. The images are of short-exposure duration, the order
of 1/60 s or less, but are separated in time by more than a
short-exposure duration, say 3/60 s. The images, then,
‘see’ two independent turbulent phase distributions across
the optical pupil.

The object has an unknown spectrum Hw,) = 0,, n =
0,1,...,N—1. Likewise, the two short-exposure images
are degraded by two unknown, random optical transfer
functions 7 Nw,) =1, tNw) =7 n=0,1,...,.N
~ 1. This might be called a ‘triply blind’ problem, in view
of the three sets of unknowns. The two observed intensity
images give rise to two known image spectra I{), /&, n= -
0,1,...,N—1 as computed via Eq. (8). The image, object
and transfer function spectra are connected by a transfer
theorem (1]

IDm700, i=12; n=01,. ,N=1. - (9)

(For the time being, we ignore added noise of detection.)
This allows us to remove one set of unknowns from the
problem, as follows. The approach is called the ‘image
division’ method.
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4. Image division method

Recall that the image spectra IV, /Y are known as
secondary data via Eq. (8) from the primary intensity data
iV, i), Divide the two image spectra, to form new data

I Mg, 20
The unknowns O, have dropped out. As in Eg. (8),
7" and 7? relate to unknown short-exposure point spread
functions (PSFs) s and s via sampling expressions
M~
W =Ax Y slile=2mimn/N
m=0
Substituting these into Eq. (10) gives our working expres-
sion

n=01,...N=1. (10)

i=12. (11)

:(I)c—"vjmn/N

M-O
D= Firsmemmrme A= 0L N=1 (12)

The lefi-hand side is known, as data D,. The PSFs s, s
are the unknowns. Regarded as a computational problem,
Eq. (12) represents N equations in 2M unknowns. Recall-
ing that N can be made as large as we wish, can it be
made large enough compared to 2M such that the equa-
tions give a solution for the PSFs?

To see what is really going on, cross-multiply Eq. (12)
and bring everything over to one side. This gives a set of
N equations

M-
L (s9=D,s@)e m* /¥ =0, n=01,....N-1.

" (13)

These are, in fact, linear in the unknowns s, s@. This
offers hope for a closed-form, exact solution to the prob-
lem. Such a solution is found as follows.

Recall that the data values are the D,. These are
generally complex. Represent them as

D, = Mm% /¥ (14)

where M, and ¢, are known modulus and phase values.
(The factor 2m/N is there for later convenience.)

Egs. (13) are complex. The real parts give rise to one
set of equations, the imaginary parts to another. Using Eqg.
(14), these are

2mmn
Repart: ) s¢ ’cos( )

2
B
Impart: Zs‘"sm( 21er:: )

v smsm[—w mn)} (13)

These are 2N lincar equations in the 2M unknowns
s @,

One hurdle that has to be overcome is that the preced-
ing equations are homogeneous (right-hand sides are 0).
Then the direct solution for the case N =M would be that
all PSF values are zero. This violates normalization and is
not, of course, a physically useful solution. It is better to
work with inhomogeneous linear equations. Luckily, the
equations may be made inhomogeneous as follows.

The quotient form of the right-hand side of data Eg.
(12) shows that the data D, are only sensitive to the ratios
of PSF values. Consequently, knowledge of the D, only
permits the 5, 5@ to be known to an arbitrary multiplica-
tive constant. This is acceptable, since if the PSFs are
initially off by such a factor they are immediately cor-
rectable by normalization. (This models each image, in the
usual way, as being a redistribution of the fixed amount of
light energy that is present in the object.)

We take advantage of such an arbitrary multiplicative
factor in the following way. Any one of the PSF values
may be arbitrarily set equal to 1 (say), and the data
equations (15) must then give, when solved for the other
PSF values, numbers that are correctly ratioed to the 1. For
example, if we set s{), =1 whereas its actual correct
value is 0.50 then if the correct value of (say) s{¥ = 0.7
the solution to Eq. (15) would give s = 1.4. The only
problem such a procedure could encounter is to set the
value 1 equal to a PSF value which, in reality, is 0. There
is no useable multiplier of O that brings it up to a finite
number. Similarly, if the real PSF value is small, say
0.0001, then setting it equal to 1 would give as solution for
the other PSF values very large numbers. Such a solution
could be unstable in the presence of small errors in the
input image data.

To avoid the latter problems, we equate to 1 a PSF
value which is least likely to be 0. Such a one would be at
the center of the PSF, i.. s{}) ; (notation: [M/2] = M /2
for M even or (M — 1)/2 for M odd). The energy should
tend to be maximal there. Doing this changes the homoge-
neous set of equations (15) into the inhomogeneous set

' 27 mn 27
() )]
me{M/2) m N
2w{M/2in
—cos(-—[—N/—]—), forn=0,1,...,.N—-1,

T stun( 25+ Sl 2 (6, -]

me{M/2)

27w{M/2]in
-—sin(—[—N/—]—). forn=12,... . N-1.

(16)

(The second-set equation for n =0 is the tautology 0 = 0
and, so, is skipped.)
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Before attempting solution, it is necessary to delete all
equations which are linear multiples of others. Including
them ruins any matrix inversion approach to the problem.
It turns out that, if one uses N = 2M equations, then the
fist M — 1 equations and the last M + 1 equations are
linearly independent and may be used to form the solution
set. We found, by simulation, that the method works. The
solution s, s® incurs no error.

The preceding paragraph applies specifically to one-di-
mensional (1 X M) images. For the corresponding M X M
problem in two dimensions it was found that an NXN
matrix -of frequencies allowed for a unique solution if
N=1.5M, i.e. an oversampling by 50% in each direction

of frequency space.

§. Demonstrations

To easily judge reconstruction quality, we worked with
a simple object — a large figure X of intensity level M —
within an M X M image field of size M = 16. To facilitate
pixel-by-pixel comparisons of ground truth and recon-
structed images, we display each pixel as an easily recog-
nized alphanumeric symbol. These cover the 10 intensity
levels (blank).: / % $ Z # @ M, respectively. Small field
size M was also dictated by the fact that any solution to
the (two-dimensional) problem requires inversion of a

TRUE INPUT PSF1
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matrix of size 2M2 X 2M?, which rapidly increases with
M and is already of size 512 X 512 for our problem.

The PSFs were randomly generated in accordance with
a Kolmogoroff power spectrum [2]. For each problem, a
pair of PSFs were so generated, convolved with the X-
shaped object to form the two images, and then processed
by the image division method. In the first demonstration,
no noise of image detection was added. Fig. 3 shows the
true PSFs in the left-hand column, and their reconstruc-
tions, by the image division method, in the right-hand
column. A pixel-by-pixel comparison shows that the re-
constructions are nearly exact (to the 10 gray level scale
used). Any errors are believed due to round-off during the
calculation, which was done in single precision arithmetic.

With the PSFs reconstructed, each was Fourier trans-
formed to give a reconstructed transfer function 7,. Using
Eq. (9), each 7, was then divided into its corresponding
image spectrum to form an estimated object spectrum. This
procedure is called ‘inverse filtering’. The object spectra
were then Fourier transformed back into x-space to give
the reconstructed objects. Fig. 4 shows cach of the two
simulated images in side-by-side comparison with its re-
constructed object by the inverse-filtering procedure. It is
seen that the reconstructions are much improved over their
corresponding images and, in fact, are very good in abso-
lute terms. In an effort to find why the approach works, we
empirically varied the support widths of the PSFs. In those

RECONSTRUCTED PSF1
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Fig. 3. PSF], PSF2 and their reconstructions.
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TURBULENT IMAGE NO. 1
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Fig. 4. Turbulent images and their reconstructions (no added noise of detection).
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Fig. 5. Turbulent images and their reconstructions (1% additive Gaussian noise of detection).
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cases where the two PSFs extend nearly to the edge of the
field. it was found that the system of equations (16) has a
well-defined inverse, so that the method gives perfect or
near-perfect results (as above). Such cases actually repre-
sent a situation of strong prior knowledge of the support
(region of non-zero values) of the PSFs. That is, the
support is known to be approximately the size of the field.
Here one can say that the field size is a ‘good’ (least)
upper bound to PSF support.

We found, further, that a range of PSF supports are
well-accommodated by the approach. As long as PSF
values of about 1% of the maximum or more exist near the
edge of the field, then the field size represents strong
enough prior knowledge of PSF support to give nearly
perfect reconstructions (assuming zero additive noise of
detection).

But in cases where the PSF values near the field edge
are significantly less than 1% of the maximum value, the
PSFs are contracted in support toward the center of the
field by significant, and unknown, amounts. Then the
known field size no longer represents a ‘good’ upper
bound to the PSF support. In these cases, the resulting
system of equations (16) turns out to have a poorly defined
inverse; no solution is forthcoming for the PSFs using
single-precision arithmetic.

From this we conclude that good prior knowledge of
PSF support is important to effective use of the approach.
In fact, PSF support can be computed from prior knowl-
edge of the overall strength of the turbulence (as measured
by the Fried r, extension parameter [5,2], for example).
Support knowledge is often a strong aid in the estimation
of PSFs. For example, knowledge of the support for the
Fourier transform of the PSFs, the OTFs (1,7, are a
vital part of the blind deconvolution approach of Holmes
{6}.

In the preceding demonstration, although the two PSFs
are random there was no added randomness due to noise of
image detection. To test the sensitivity of the approach to
such additional noise, we added 1% additive, Gaussian
noise to both images and re-processed them. The result
was a significant deterioration in the quality of the PSF
reconstructions {not shown for brevity), but not enough to
wipe out reconstructed object details. Fig. 5 shows the
turbulent and (now) noisy images for this case, on the left,
along with their two corresponding object reconstructions
on the right. The X shape of the object is still clearly
visible in both reconstructions.

6. Discussion

As was seen, the image division method, as currently
used, works within a domain of 1%, or less, noise of
detection. However, as with other poorly posed problems

[4]. the image division method should be capable of ‘regu-
larization®, such that it will tolerate noise levels on the
order of 10%. Luckily, there are many candidate regular-
ization schemes to choose from [4,7.8]. We believe that
this should be the main thrust of future research on the
problem.

There may be something to gain in noise de-sensitiza-
tion by sampling at finer subdivisions than as used in the
demonstrations. This would lead to a situation of more

_ equations than unknowns, and the transition to a least-

squares solution. Such a solution effects a certain degree of
regularization and, so, will be one of the regularization
schemes (referred to above) that are experimented with.
The main problem that is anticipated with this increased-
data approach is the need for higher-rank matrix operations
(transposition, multiplication, inversion), which are heavy
consumers of computation time. However, there are ways
of getting around this problem, such as by posing the
inversion problem as a minimization problem and seeking
a maximum gradient solution instead. Such an approach
would avoid the need for matrix inversion, for example.

The approach seems generalizable to a situation where
more than two short-exposure images are at hand. For
example, in the case of three images I, /@ and I two
(now) data sets D= IV /1@ and DP = 1P /I (see
Eq. (10)) could be formed, the object spectrum O, would
drop out as before, and two sets of linear equations (of the
form of Eq. (13)) in, now, the three PSFs s(’, s and s’
would result. Combining the two sets of lincar equations -
into one should result in a problem that is soluble by
straightforward linear inversion. Given the increased
amount of independent data in the problem, a higher
degree of regularization should be attainable. The question
is whether this benefit would offset the added price 10 be
paid in added stability and tracking needs, as well as image
manipulation and storage needs.

This study shows that, both by theory and computer
simulation, random atmospheric turbulence is not the ulti-
mate limitor of object resolution quality. It is noise of
detection, coupled with lack of knowledge of spread func-
tion support.
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Regularization of the image

division approach to blind deconvolution

Sergio Barraza-Felix and B. Roy Frieden

A problem of blind deconvolution arises when one attempts to restore a short-exposure image that has
been degraded by random atmospheric turbulence. We attack the problem by using two short-exposure
images as data inputs. The Fourier transform of each is taken, and the two are divided. The result is
the quotient of the two unknown transfer functions. The latter are expressed, by means of the sampling
theorem, as Fourier series in corresponding point-spread functions, the unknowns of the problem. Cross
multiplying the division equation gives an equation that is linear in the unknowns. However, the
problem has, initially, a multiplicity of solutions. This deficiency is overcome by use of the prior
knowledge that the object and the point-spread functions have finite (albeit unknown) support extensions
and also are positive. The result is a fixed-length, linear algorithm that is regularized to the presence
of 4~15% additive noise of detection. © 1999 Optical Society of America

OCIS codes:

1. Image Sampling

For simplicity the algorithm is first developed for one-
dimensional imagery. Following this, the theory is
generalized to two dimensions to allow for two-
dimensional images.

Consider an incoherent image i(x) that has a sharp
cutoff frequency 2. The finiteness of ) implies that
i(x) has infinite extension. However, for large
enough values of || it will fall off to negligible values
compared with the inevitable noise of detection. For
analytical convenience we replace these values with
zeros. This is an approximation. Let this trun-
cated image have length L. For convenience, place
this image along the positive x axis. Denote the
Fourier transform of the original image i(x) by I,(w).
The spatial frequency w is in units of radians/length.
Then Ij(w) ~ I(w), where

1(0)-nsesn = j “dri(x) expl~juz). (D)

0
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100.3010, 100.5070, 010.1330.

The 1mage spectrum can be approximated by the
truncated image spectrum.

By. the Whittaker-Shannon sampling theorem,!
the finite cutoff frequency (2 allows us to use in place
of Eq. (1), with zero error, the discrete sum

M-1
I(w)-qsu<o = 2 Ax i(mAx) exp(—jwmAx). (2)
m=0
Here M — 1 = L/Ax and the fixed interval
Ax = /0 3)

is called the sampling interval, because it spaces the
sampled intensity image as values i(mAx).

Because of the discrete nature of the sum in Eq. (2)
the spectrum replicates periodically. This permits
us to use, then, as the spectrum

© M-1
I(@)osus2a = 2, Ax i, exp(~jomAx),

m=0

in = i(mAx) 4

in place of Eq. (2).

The spectrum computed with Eq. (4) can, in prin-
ciple, be evaluated at a continuum of frequency val-
ues over the given interval. For computational
purposes we evaluate it at a fine, but discrete, sub-
division

n=01...,N-1. (5)

= (2n/N)Q,




These discrete values are all within the interval (0,
201 prescribed in Eq. (4). The size of N governs the
fineness of the frequency sampling. Notice that N
can, in fact, be taken as large as is desired. We use
this fact in the processing method below.

By Eq. (5), the exponent in Eq. (4) becomes

2n _mm 2mjmn
=j—=Q—=——. 6
InYaT N ©

Then Eq. (4) simplifies to

Jw,mAx

M-1
Iw,) = I,=Ax 3, in exp(~2mjmn/N),

m=0

n=01,..., N-1 (7

Equation (7) is in the form of a discrete Fourier
transform but with a difference: generally the num-
ber N of output values in frequency space is different
from the number M of input values in direct space.
Our division method of turbulence processing, devel-
oped below, hinges on the use of cases for which N > M.

2. Image Turbulence Problem :

The problem of imaging through a turbulent atmo-
sphere has a long history.2-® The problem is called
blind deconvolution because not only is the goal of
the deconvolution procedure—the sharp object—
unknown but so is the point-spread function (PSF) of
the imaging process. A good reference on ordinary
(not blind) deconvolution methods is Jansson.!®
Various approaches to solving the blind deconvolu-

tion problem have been tried; see, for example, Refs.

5-9. These are generally open-ended iterative
searches, growing out of either a gradient search of
solution space or a replacement algorithm (successive
Fourier transformation and replacement). Also, the
approaches are nonlinear in the unknowns (object
and PSF) in that these unknowns multiply each other
in the imaging equations. Our approach will in-
stead be of fixed length and linear in its unknowns.

The approach grows out of the following imaging
situation. A single incoherent object is imaged twice
in succession through a turbulent atmosphere. The
images are of short-exposure duration, of the order of
1/60 s or less, but are separated in time by more than
one short-exposure duration, say, 3/60 s. The im-
ages, then, see two fixed, independent turbulent
phase distributions across the optical pupil.

The object has an unknown spectrum O(w,) = O,,
n=20,1..., N - 1 Likewise, the two short-
exposure images are degraded by two unknown, ran-
dom optical transfer functions 19(w,) = 1P, 1®(w,)
=1%,n=0,1,...,N - 1. This might be called a
triply blind problem in view of the three sets of un-
knowns. The two observed intensity images give
rise to two known image spectra, I and I?, n = 0,
1,..., N = 1, as computed from Eq. (7). As is
known,! the image, object, and transfer function spec-
tra are connected by a transfer theorem,

=40, i=1,2 n=0,1,...,N-1 (8

(For the time being, we ignore added noise of detec-
tion.) This allows us to remove one set of unknowns
from the problem, as follows.

3. Image Division Method

For convenience, we use the shorthand notation that
IYmeans IV, n =0,1,...,N - 1, and similarly for
I®, Recall that the image spectra I'® and I'®’ are
known as secondary data [from Eq. (7)] from the pri-
mary intensity data i’" and i®. Form the quotient
of the secondary data:

1) (1), (1)
D I AP0, =
T e e OSSN —

s I;.Z) 1.:2)0" 1.:2) 4

(Thus, the “image division” method.) Equation (8)
was used. Note that the object spectrum O, can-
celed out in Eq. (9), which eliminates one set of un-
knowns from the problem. Such cancellation hinges
on a lack of image detector noise in Eq. (8).

Now, as at Eq. (7), ¥ and 1 relate to unknown
short-exposure PSF’s s and s® by means of the
sampling expression

0,,...,.N-1 (9

M-1
'rf,"’ = Ax 2 Sg.) exp(—2mnjmn/N), i=12 Q10

m=0
Substituting Eq. (10) into Eq. (9) gives our working
expression:

M-1 M=-1 .
D=3 s exp(—zwjmn/m/ S s exp(~2mjmn/N),
m=0 m=0 .

n=01...,N-1 (11)
The left-hand side of Eq. (11) is known as data. The
PSF’s s'¥) and s® are the unknowns. Regarded asa
computational problem, Eq. (11) represents N equa-
tions in 2M unknowns. Recalling that N can be
made as large as we wish, can it be made large
enough compared with 2M that the equations give a
solution for the PSF’s?

To see what is really going on, cross multiply Eq.
(11) and bring everything over to one side, which
yields a set of N equations

M-1
S [s¥ - D,s®)exp(-2mjmn/N) = 0,

m=0

n=01...,N-1. (12)

These are, in fact, linear in the unknowns s’ and s
and thus offer hope for a closed-form solution to the

problem.
Recall that the data values are the D,,. These are
generally complex. Represent them as

D, = M, exp(2mj$,/N), (13)

where M, and ¢, are known modulus and phase
values. (The factor 2n/N is there for later conve-
nience.)”

Equation (12) is complex. The real parts of Eq.
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(12) zive rise to one set of equations; the imaginary
. parts, to another. By Eq. (13), these are

Re part: s\ cos(zqmn) 2 M,s2

X cos[?—:,-T (¢, — mn)J =0,

2
Im part: }: s sm( 1;:7”) + 2 M,sy

2
X sm[ﬁ (s — mn)] =0. (19
These are 2N linear equations in the 2M unknowns
(1) and 3(2)

4. Overcoming the Homogeneity Problem

One hurdle that has to be overcome is that the pre-
ceding equations are homogeneous (the right-hand
sides are 0). We need a right-hand-side vector of
known values if the system of equations is to have a
solution by conventional linear inversion. Another
problem is one of uniqueness of solution: Not only
do the true PSF’s s'* anu s satisfy the equations but
so do the convolutions sV(x) ® f(x) and s'?(x) ® f(x)
with any kernel function f(x). [By Eq. (9), the noise-
free data D, are invariant to multiplication of each of

71 and %7 2" by an arbitrary function F,, in frequency
space ] The implication is that the matrix of coeffi-
cients in Egs. (14) is rank deficient if the data M, ¢,,
contain no noise. This point is clarified in Section 5.

This solution-redundancy problem has to be over-
come because the plan is, by Eq (8), to inverse filter
each of the images I'V and I'? with their estimated
transfer functions -r“’ and -rf,z’, respectively. If each
of the latter functions is incorrect by an arbitrary
factor F,, this will spoil the inverse-filtered outputs.
In fact, this problem will be overcome in the process-
ing algorithm defined in Section 6 below.

The inhomogeneity problem can be overcome as
follows: Aside from being invariant to the operation
of convolution (as mentioned above), the noise-free
PSF solutions are invariant to simple multiplication
by a constant [again, see Eq. (9)]. This is acceptable,
because if the PSF's are initially incorrect by such a
factor then subsequent inverse filtering that uses
them will also be merely incorrect by a constant fac-
tor. This discrepancy is acceptable because images
are adjusted in absolute brightness for the viewer’s
convenience anyhow.

We take advantage of such an arbitrary multipli-
cative factor in the following way: The total ener-
gies in s'* and s® are

B m S,

i=1,2. (15)

We may assume any convenient value for EV. Do-
ing so merely scales sV by an arbitrary factor—
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acceptable by the precedm% argument. Then Eq.

(15) is solved for any one sV’ value, say,
(1) = g1 2 sm (16)
m*k

This s¥ value is removed from the left-hand sums in
Egs. (14), because it is no longer an unknown. In-
stead, it forms a nonzero right-hand side. Accord-
ingly, Egs. (14) become

s sg,[cos(%rmn)_ os(21rkn)] ZM sm

m¥k N

X cos ENE (¢, - mn) = —EW cos(&;-virf) ,
2 sm[ (Z-n'mn) _ sm(z'rrkn)] + 2 M, s
mek N
2n 2nkn
e — = _p
X sin N (b, — mn) = -FE sm( N ) an
Indexn =0,1,...,N — linthe first of Egs. (17) and
n=12,...,N-1in the second (for n = 0 it

becomes the tautology 0 = 0 and, so, is skipped).
The equations are no longer homogeneous, as re-
quired. They are also no longer rank deficient for M -
small enough (see Sections 5 and 7). -

5. Least-Squares Solution
Equations (17) are linear in the unknowns s and
s They take the convenient matrix form

[Hx =b, (18)

where x designates the vector of unknowns s® and

s@ [H] denotes the matrix of trigonometric "coeffi-
c1ents in Egs. (17), and b denotes the vector right-
hand sides of Egs. (17).

Recall that the number N of data frequencies can
be made arbitrarily large. With a fixed number
2M — 1 of unknowns, the problem [Eq. (18)] becomes
overdetermined, which allows a least-squares solu-
tion to be sought. A least-squares solution is bene-
ficial because it effects a degree of data noise
smoothing, i.e., regularization, on its own. How-
ever, we also noted that the matrix of coefficients in
Eqgs. (14) is rank deficient. This deficiency can be
overcome by the proper choice of dimension M in Egs. °
(17), as described next.

It was previously found!! that Eqs. (18) can be
solved if the user has, effectively, prior knowledge of
support regions for the PSF’s. Then a least-squares
solution to the problem of Eq. (18) can be formed. As
much as approximately 2% additive Gaussian noise
can be so tolerated.l? However, this tolerance is too
narrow for practical problems. Something else
needs to be inserted into the algorithm, namely, the
use of prior knowledge?!? about the PS¥’s, to regular-
ize the algorithm to the presence of greater amounts
of noise.

Generally speaking, the more prior knowledge
there is about the unknowns of a problem, the better




is the degree of regularization that can be attained.!
Two forms of prior knowledge are at hand here.®
One is finite support regions for the PSF’s, as dis-
cussed above. Another is positivity. Because our
images are incoherent, the object and the PSF’s rep-
resent energy distributions and, hence, must obey a
condition of positivity:

. 0,20, s¥=z0, s@=0. (19)

We return to the knowledge of the finiteness of
support. Both the object and the PSF’s are, effec-
tively, zero outside regions of finite extension. Also,
consider only a case in which these extensions are
small enough that the image field contains all the
image energy: None of it spills outside the field.

Generally denote the true value of a support exten-
sion by K and an estimate by K. The object is as-
sumed, for simplicity, to lie within a square field of
linear extension K,,. The two PSF’s have, in gen-
eral, different x-component supports and different
y-component supports. However, by a trick [see
Egs. (27) below] we can make them both have effec-
tively the same x-component support, denoted K,
and the same y-component support, denoted K,

This knowledge of prior support mathematically
affects the rank of problem (18), as follows: Suppose
that both PSF’s s’ and s® have a true common
support value K. Also, let the estimated common
support value be K. Then the upper value for m in
the sums in Egs. (17) will now be K instead of the
image support value M. This means that, effec-
* tively, many of the PSF values are equated to zero
and, consequently, the matrix [H] becomes narrower.

Matrix [H] is full rank or rank deficient, depending
on the presumed support size K, as follows: First
consider a case of noiseless data. If the guess is that
* K = M, then any PSF answers are permitted that are
wider than true support value K through convolu-
tions with any kernel function f(x) (see the beginning
of Section 4) of support length (M — K). Matrix [H]
mirrors this ambiguous situation by not permitting a
unique solution, i.e., by being rank deficient. Like-
wise, if K is made any value larger than the true
support value K, the matrix will still be rank defi-
cient. [Now the kernel function need have only sup-
port length (K — K).] However, once K = K the
preceding convolution effect can no longer hold (the
kernel would necessarily have negative support).
These arguments were borne out in computer simu-
lations as described in Section 7.

On the other hand, with data noise present there is
no problem of rank deficiency for [H]. Rank defi-
ciency followed ultimately from the fact that the
noise-free data D,, defined by Eq. (9) are invariant to
multiplication of both transfer functions v." and 72
by an arbitrary function. However, with data noise
present in the image, the division of their spectra I
and I'? in Eq. (9) no longer results in a simple quo-
tient of transfer functions 7"’/7®. Hence there isno
longer a possible ambiguity in the data owing to mul-
tiplication of the transfer functions by an arbitrary

function. In essence, the roise breaks the ambigu-
ity. Correspondingly, matrix [H] should be full rank
for any choice of support K as long as the latter does
not exceed the image support size M. Again, this
behavior was followed in the computer simulations.

With presumed support values X, and K,, problem
(18) becomes

[Hilxi = byi. (20)

Equation (20) can be solved in the least-squares
sense,

I[Hilxi = bgl = min., 1)
as follows:

We used one-dimensional notation above. Now
we proceed to the full, two-dimensional case. It is
easy to see that equations of the same form as Eq. (20)
result, provided that the now doubly subscripted un-
knowns s{!) and s@, are packed as a new, one-
dimensional vector xz of length M = KK, The
number of unknowns is. as in one dimension, (2M — 1).
Also, N is now the chosen number of two-dimensional
frequencies (w,,, w,). As in one dimension there are
2N - 1 equations. However, (N — 1) of these equa-
tions are found to be repetitions and so are ignored.
This leaves, then, N equations in the (2M — 1) un-
knowns. However, if the support lengths K, and K_V
are chosen small enough relative to N, the net matrix
[Hg) will be tall and full rank, so a least-squares
solution to Eq. (21) can be sought.

Examples of least-squares solutions are provided
by the simulations below. There the image spectral .
field is of dimension N = 24 X 24 = 576 frequencies.
Thus there are 576 equations in problem (20). Also,
the spatial image field is made to be 16 X 16 pixels.
Hence any PSF with a support length of 16 or more
will cause aliasing effects. The true PSF supports
are made tobe K, = K, = 8 pixels. The status of the
matrix [Hg] with respect to rank sufficiency is found
to be as follows: When no noise is added to the im-
age data the matrix is full rank when K, = 8 and K,
=< 8. With added noise, the matrix is full rank when
both K, = 15 and K, = 15. The noise breaks the
ambiguity problem, as was mentioned above.

6. Net Algorithm

The preceding considerations provide the basis for
a fixed-length restoration approach. The approach
would be simply the preceding least-squares method
if the correct supports K, and K, were known. How-
ever, of course they are not. Therefore the plan is to
form a series of least-square solutions x;gq to Eq.
(21), using a fixed sequence of trial values K, and K,,
and then in some way to judge which solution is the
best of the lot. The best solution is defined to be the
one that gives a pair of image estimates that best
agree with the two given images, subject to enforced
positivity [inequalities (19)] on the running object
and PSF estimates. The algorithm is given next
and, for the reader’s convenience, is also shown sche-
matically in Fig. 1:
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Fig. 1. Flow chart for the image division program.

(1) A pair of short-exposure images i'"’ and i*® is
given. These are the primarxv data for the problem.
From these images, spectra I’ and I'®’ are formed by
a discrete Fourier transform, Eq. (7). These spectra
are divided, as in Eq. (9), to form quantities D,,.
From Egq. (13), the associated modulus and phase
quantities M,, and ¢, are formed. The latter may
be regarded as secondary (i.e., preprocessed) data for
the problem.

(2) A pair of support estimates K, and K, is chosen.
These supports are both, of course, smaller than the
total image field extension, so this choice reduces the
number of unknowns x in problem (21), as discussed
above. The support choice strongly affects the solu-
tion. ~

(3) The least-squares solution x;q = §¥, §® to
problem (21) is formed by use of orthogonal-
triangular factorization.’2 This factorization avoids
the need to take matrix inverses, a numerically un-
stable operation for poorly conditioned matrices.
The PSF outputs are corrected to obey positivity (19).
The rule is to replace all negative values by 0. Call
the outputs § and §%2.

(4) The discrete Fourier transforms [Eq. (7)] of
these outputs, 7" and 1@, are taken and are used in
Eq. (8) to form object estimates:

O(i) = I(i) /T(i), i= 1,2 (22)

by inverse filtering.
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(5) These estimates are inverse-Fourier trans-
formed into (x, y) space to yield object estimates 6,
i=12

(6) These object estimates, in general, will not obey
positivity (19). We enforce positivity, as in step (3),
1.e., by simply zeroing every negative value.

(7) The object should have a support that is consis-
tent with that of the image and that of the PSF’s.
Define (for example) the x-component support K, in
the image as its linear extension at the 2% level of
maximum intensity. Then, with the trial value K,
serving as the x-component support of the PSF’s, the
x-component support value K, . of the object is taken

to obey
Ky. = K..—-K. +1 (23)

The estimated object is zeroed outside this support
interval. The same operations are performed for the
y-component direction. .

The outputs of steps (6) and (7) are called 6%,
i=12.

(8) Each estimated PSF from step (3) is convolved
with a corresponding object estimate from step (7),
forming estimated images

1y = &0 ® 60,

The symbol ® denotes a convolution operation.

=12 . (24)

(9) The extent to which these estimated images
agree with the given images i'" and i'® defines how
valid were the hypothetical support values in step (2).
For example, poor agreement is taken to imply in-
valid support values. We quantify poor agreement
by forming an error metric over both images:

li(i) - :(i)l
I i(i)l
The vertical lines signify the absolute value operation

on the vector within. Parameter e measures the in-
consistency of the solution with the image data.

e = eV +e(2)’ e = (25)

(10) The value of e is registered, and a new cycle
begins at step (2), with a new choice of supports.

(11) The minimum value of e that is found over the
range of test supports is taken to identify the final
solution §9, 69, i = 1, 2. The arithmetic average of
the two object estimates defines the output object:

6 = %P +69). (26)

7. Demonstrations

The effectiveness of the image division algorithm
[steps (1)—(11)] is tested by computer simulation.
The computer is an Acer Model 2016 Emerald Desk-
top Computer. It has a 166-MHz Pentium processor
and a 16-MB EDO memory. Execution time is ~1
min for each cycle [steps (1)~(11)] of the algorithm.
For the 16 X 16 pixel field used, a typical output
requires 120 cycles, or 120 min in all.




.

" frequencies, or N = 576.

The image spectral field size in all cases is 24 X 24
(Larger field sizes might
require the use of a mainframe computer.) The sub-
division in image space is 16 X 16 pixels, and we
confine the object to an 8 X 8 pixel square region in
the center of the field. The two PSF’s are con-
structed with support values K, = K, = 8.

In the solution search loop we allow for all possible
support pairs (K, K,) over the full range of values 2 <
K, < 15 and 2 < K, < 15 when the simulated data
contain noise, or values K, = 8 and K, = 8 when there
is no noise. For these ranges of support values, ma-
trix [Hg] is found to be of full rank (as discussed in
Section 5). In actual practice, when it is not known
whether the image data contain significant noise the
full range of supports would be used, of course. A
state of rank deficiency is made known to the user by
means of a flag indicated by the MATLAB system in use,
so this trial support combination is simply skipped in
the search procedure.

Additive noise of detection is included in the image
simulations. Hence there are two sources of ran-
domness to overcome: the randomness of the PSF’s
and of the detector noise. The latter is independent
Gaussian, with a standard deviation ¢ that is ex-
pressed as a percent of the root-mean-square signal
level. For example, 4% noise means that o is 4% of
the root-mean-square image level.

In the first tests, a letter C object is used as the
ideal input; see Fig. 2(a). Note the gradual bright-
ening from top to bottom and the sharp edges bound-
ing the letter. These features allow the algorithm to
be tested against both subtly changing and rapidly
changing gray levels.

The two PSF’s for the 4% noise case are shown in
Figs. 3(a) and 3(b). These PSF’s were constructed
independently at each pixel within a central 8 X 8
field. Hence the true PSF support values (K., K)
are (8, 8). Each pixel intensity is randomly chosen
from a uniform probability law, with thresholding at
a finite lower value to make the black background
intrude randomly within the support boundary.
The aim is to make the boundary less well-defined as
a square (8 X 8) entity, so the support information (8,
8) does not represent an unrealistically strong
amount of information. The PSF’s shown are typi-
cal of the ones tested. Since the PSF’s were gener-
ated independently at each pixel, their power spectra
are flat. Real turbulence is, of course, approximated
by a Kolmogorov power spectrum.2 We judged that
a flat power spectrum would be a harsher test of the
approach than the Kolmogorov spectrum because un-
correlated PSF signals represent a situation of max-
imum ignorance regarding PSF values. Also,
uncorrelated PSF’s were easier to generate by com-
puter. Future tests of the algorithm will be made
with real (turbulence-degraded) data, which is of
course the truest test of any algorithm.

Reconstructions of the letter C by the use of the
algorithm are given in Figs. 2(b)-2(d). These recon-
structions are for various levels of image noise, as
indicated. Itis seen that the edge gradients are well

<)

H 10 15 5 10 15
Fig. 2. Object reconstructions at given levels of detector noise (the
indicated coordinates are pixels): (a) letter C object, (b) recon-
struction with 0% detection noise, (¢) reconstruction with 2% noise,
(d) reconstruction with 4% noise.

restored at these noise levels, although the subtle
gray-level transition is poorly reconstructed at the
4% level of noise.

The reconstructed PSF’s are shown, respectively,
in Figs. 3(c) and 3(d). It is seen that at this level of
noise there is a tendency, although not a strong one,
for the pixel values that are internal to the PSF’s to
be faithfully reconstructed. On the other hand, the
supports for the PSF’s in Figs. 3(a) and 3(b) are per-
fectly estimated in the reconstructions in Figs. 3(c)
and 3(d). Probably the fidelity of the reconstruc-
tions owes more to the correct estimation of the sup-

5 10 15 5 10 15
Fig. 3. Data PSF's and their reconstructions for 4% noise: (a)
PSF 1, (b) PSF 2, (¢) reconstruction of PSF 1, (d) reconstruction of
PSF 2.
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(2)

5 10 15
Fig. 4. Data images for 4% noise: (a) image 1, (b) image 2.

ports than to reproduction of the internal features of
the PSF’s. Again, we tried to minimize this effect by
allowing the zero background to intrude randomly
within the 8 X 8 fields of the simulated PSF’s.

The two images that were used as inputs in the 4%
noise case are shown in Fig. 4. These are, mathe-
matically, the convolutions of the letter C of Fig. 2(a)
with the PSF’s of Figs. 3(a) and 3(b), plus 4% noise.
The images exhibit little resemblance to the letter C
and so constitute a good test case for the algorithm.

It is by now well known that pointlike objects are
restored exceptionally well when they are con-
strained to obey positivity.1013 We therefore also
tested the algorithm against a cluster of point-source
objects, which are shown in Fig. 5(a). The image-
division algorithm was applied to image pairs of this
object at three noise levels: 5%, 10%, and 15%.
The object reconstructions are shown, respectively,
for these noise cases in Figs. 5(b), 5(c), and 5(d). In-
deed, these figures show the three point sources quite
well, i.e., with almost no blur. As a negative aspect,

spurious background details emerge. These would -

probably be minimized by the use of a nonlinear re-
storing technique.

A premise of the algorithm [see step (11)] is that
the data inconsistency e has a grand minimum at the
correct support levels (K., K,) for the case. To check
out this assumption we have plotted, in Fig. 6, e
versus K, for various values of K, for 4% noise.
From Figs. 3(a) and 3(b) the true support values are
bere (K., K,) = (8, 8). It is seen that the minimum
value is at the low point of the open-circle curve, i.e.,
for the point (K., K)) = (8, 8). These are the correct
supports for this problem. Notice, however, that the
asterisk curve (for K, = 7) has a minimum that is
nearly as low as that of the open-circle curve. This
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5 10 15 5 10 15

Fig. 5. Impulse object case studies: (a) object, (b) reconstruction
with 5% detection noise, (c) reconstruction with 10% noise, (d)
reconstruction with 15% noise.

problem worsens at higher-noise czises, for which the
minimum may no longer define the true supports.

8. Discussion
The two PSF’s might not have the same support K

‘and the same support K,. In this general case there

are four support parameters to vary in the algorithm
loop (1)=(11). This case represents a .four-
dimensional space of solutions, computationally a
much more difficult problem to cope with than the
two-dimensional one that we used. In fact, we can
convert the four-dimensional problem into a two-
dimensional one, as follows. Choose weights a,, a,,
b,, by > 0 such that new images are formed:

i"(l) = aliu) + azi(z),
@ = b,i"+b,i% a,+a,=1, by +b,=1.

(27

8 10 12

Fig. 6. Does data inconsistency e attain a grand minimum at the
correct support levels? Inconsistency e is plotted versus support
component K, for various values of component K,: K, = 9 (plus-
es), K, = 8 (open circles), K, = 7 (asterisks). The correct support
levels (K., 'K,) = (8, 8) are indeed attained at the grand minimum
(see the open-circle curve).




*The new images i) and i*® are used as the inputs to

' the image division algorithm. It is apparent from
Eqgs. (27) that the new images are formed by net
PSF’s that obey, respectively,

s—(l) - als(ll + 028(2),
i S.‘z) = bls(” + bgs(z). (28)

Because each of the new PSF’s is a weighted sum of
both old PSF’s, the new PSF's must both have the
same x-component support and the same
y-component support, as we wanted.

The overall objective of regularizing the image di-
vision method has been partially achieved. Depend-
ing on the type of object present, anywhere from 4%
to 15% noise can be tolerated by the amended ap-
proach. The advantages of the approach are the fi-
delity of its outputs, its linearity and hence potential
speed, that it is of fixed length and avoids an open-
ended search of solution space, and that it needs but
two short-exposure images as inputs. The central
role played by the existence of finite supports for the
PSF’s and the object has become apparent. It re-
sults that any prior knowledge of PSF support that
can be built into the algorithm to narrow its support
search will increase its utility. Also, the method by
which positivity is enforced can be improved. The
zero-replacement approach of steps (3) and (6) of the
algorithm does not permit data consistency in the
estimates. Recourse to a nonlinear approach such
as maximum entropy?13 permits data consistency.
This should lead, ultimately, to a better estimate of
the PSF supports and, hence, to a better output re-
construction 4.

It has been noted that a practical technique for
dealing with the levels of noise encountered in real
data has yet to be found.® The image division algo-
rithm might achieve this overall aim. The next tests
of the algorithm will be on real atmospherically de-
graded images.

This study was supported by a grant from the Un-
conventional Imagery program of the U.S. Air Force
Office of Scientific Research.
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A new information matrix [F] with elements F,,={(Ym—a,)(yx—a,)

(8 In p(y | »)/0a,,)(0 In p(y | 8)/0a,)) is analyzed. The PDF p(y|a) is the usual

likelihood law. [ F] differs from the Fisher information matrix by the presence of
the first two factors in the given expectation. These factors make F,,, unitless, in

contrast with the Fisher information. This lack of units allows F,, values from

entirely different phenomena to be compared as, for example, Shannon informa-

tion values can be compared. Each element F,, defines an error inequality’
analogous to the Cramer—Rao inequality. In the scalar case F,,, = F, for a normal

Kyla) law F=3, while for an exponential law F=9. A variational principle

F=min (called FMIN ) allows an unknown PDF p(x) to be estimated in the

presence of weak information. Under certain conditions F obeys a *‘Boltzmann

F-theorem” dF/0t €0, indicating that F is a physical entropy. Finally, the trace ¥

of [F] may be used as the scalar information quantity in an information-based

principle for deriving distribution laws p of physics.

1. INTRODUCTION

The concept of Fisher information(") is a renowned and invaluable tool of
_ estimation theory. However, Fisher information has a number of properties
which are not ideal for various purposes. For example, in describing a
parameter g with units (say) of length, Fisher information has units of
1/length2 Or, for a parameter with units of mass, the information has units
of 1/mass2. Then a comparison of the two information values is somewhat
like comparing apples with oranges. If, on the other hand, the information
was unitless, such a comparison could be effectively made (as, for example,

! Optical Sciences, University of Arizona, Tucson, Arizona, 85721; e-mail: friedenr@super.
arizona.edu.
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when comparing Shannon information values [ Eq. (48) below] from dif-
ferent' phenomena, all of which are unitless).

The subject of this paper is, then, the development of an information
quantity that is related to the Fisher information but, by contrast, has the
attribute of being units-free. The new information will have other desirable
properties as well.

We start out, in Section 1.1, with an enumeration of the basic proper-
ties obeyed by Fisher information, including sensitivity to units. Then in
Section 1.2 we show that Fisher information does not remain invariant in
form to a transformation to Fourier space. Motivated by these nonideal
properties of Fisher information, we introduce and develop in Section 2
and beyond the new, unitless information measure.

1.1. Basic Measurement Theory

Suppose that we want to estimate a set of parameters a=a,.., a;
from data y = y,,..., y». The data have a random component that is usually
called “noise.” The estimates are chosen functions & = d,(y),..., dx(y) of the
data called “estimator functions.” A central issue is how accurate these
estimates can be, in the presence of given noise (as specified by a PDF
p(y | a) called the “likelihood law™). If the estimators are correct on average
(“unbiased”) over all possible data y, obeying

aly)) =a, (1)
then the mean-square errors ez = {(a, — d,(y))?)> of estimation obey
ex >[I ] (2)

This is the Cramer-Rao inequality.!") Quantity [/ '], is the kth element
along the diagonal of the inverse matrix [/~!'] to the Fisher information
matrix [I], where

Olnpdlnp
0a,, Oa,

N={l}  Im= ,..,.(p>s< > p=piyla)  (3)

Notation /,,,(p) means that I, is a functional of p.

Equation (2) shows that the elements of [/] must have units that are
the reciprocal of those of the square of any parameter a,. This has the
undesirable effect of making it difficult to compare in some meaningful way
the Fisher information values for two sets of data arising from different
phenomena. By comparison, Shannon information, which is unitless, does
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not present this problem. One bit of information has the same meaning

regardless of phenomenon.
In physical apphcatlons mentioned below, we will be most interested

in the case where there is one measurement per parameter, and the noise
values x, are independent. Then dimension K= N and

yn=an+xn, an(y)=dn(yn)’ n= ls---; N (4)
The Cramer-Rao relationship (2), (3) now becomes more simply
e2r,>1 | (5)

ol 2
I,= f Y Pu(Vn|4n) [ i giy" Ia")]

(6)

(All integrals have infinite limits.) The tie-in with general matrix [7~']
preceding is that element
[ =1/1, (7)

Further, by the form of the first Eq. (4) the ﬂuctuatxons in y, purely
follow those in x,, so that

pn(ynlan)=PX(yn—a Ian) | . (8)

where the latter is the PDF for x,. Assume also that p,, obeys Galilean (or,
shift) invariance,

Px,(}’n"anlan)=17x,(}’n"an) (9)
Using this in Eq. (6) and changing integration variable to x = y, —a, gives

(dpx,(x)/dx)?
Px,(x)

L=1(px) = dx (10)

With n=1,.., N, this defines a vector of information quantities.
An associated scalar information I may be formed as the sum over all
-information components I,. This is also the trace of the Fisher information

matrix [7]. Then, by Eq. (10),

(o) BV
-3 Jemn e B 1 (RY o

=1I(g},. q%), ~Where px(x)=g,(x)? (12)
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defines real probability amplitude functions g,(x). We see in Eq. (11) that
I no longer depends upon the parameter a,,. This is beneficial since a, was

unknown, by hypothesis.

1.2. Noninvariance of Form Under Fourier Transformation

Information form I of Eq. (11) has been used as the key element in an
approach for deriving distribution laws py_or amplitudes g, of physics.*"")
The approach is called the principle of extreme physical information (EPI).
The trace information form 7 [ first suggested by Stam‘”] defines the quality
of data values in (initially) x-space. However, in quantum mechanics
x-space and momentum u space are equally valid specifiers of a particle,
and nature is indifferent to the space chosen for the measurement. Hence,
the information that is used to specify the quality of the measurement
should be symmetric to the choice of space. That is, the information should
have the same form in each space. However, as we show next, information

I does not have this property.
Consider the case where the number N of measurements is 2. For con-

venience, pack the amplitude functions (q,, ¢,) as the real and imaginary
parts of a complex probability amplitude

V=g +ig, i=/—1 | (13)

Assume that the unknown PDF obeys Galilean property (9), so that I has
the form Eq. (11). By the use of Eq. (13), it is simple to show that Eq. (11)
may be expressed in terms of the complex amplitude function y(x) as

I=4[ax |y ¥(x)=dy/dx (14)

A complementary space to the space x is the Fourier space u, which
is specified by an amplitude function ¢(u) obeying™>* 7

[ ds gy e (15)

Y(x)= ”“;nﬁ

For a particle, Fourier space has the physical significance of being momen-
tum space, with x4 the momentum. When one substitutes Eq. (15) into
Eq. (14), the result is

=2 [ 9u? (16)
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This is not of the same form, in its dependence upon coordinate u, as is

Eq. (14) in its dependence upon coordinate x.
Hence, to attain the required invariance in form requires a different

information measure.

2. A UNITLESS INFORMATION MEASURE

For simplicity, we first seek a unitless, scalar measure of information F.
This can be independently derived in three different ways, from different
aspects of the measurement process: (1) the use of unbiased data, (2)
Fisher information 7 for logarithmic noise, and (3) Fisher information I for
a net PDF b2x2p ,(x), b = const. We conclude this section by constructing
a unitless information matrix F,,, defined as the mean outer product of a
certain vector. Its scalar version is the scalar F just mentioned.

2.1. Information F from Unbiasedness Property

This derivation follows analogous steps to the standard derivation”
of the Cramer-Rao inequality. Start by assuming one measurement y that

is unbiased,
0=(y-ay=[dy—a)p, p=p(yla) (17)

Differentiate this 9/0a, giving
Idy(y—a)-a-e—fdyp=0 (18)
Oa

Using normalization of p and the usual identity for the derivative of a
logarithm gives

01
[ary—a) p=5E=1 (19)

In preparation for the use of Schwarz’ inequality, we split up the integrand
as .

[1y/p1] 0-a)Vh 52| =1 20)
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(This choice of splitting is the departure from the usual Fisher information
derivation.) The left-hand side is the inner product of the two bracketed
terms. Using the Schwarz inequality for this product gives

dIn p\? '
2
<[ [ [ tr-arp (G2) | @)
Using normalization for p and the definition of an expectation, we get
d1n p\?\
1<{-ar(T5E) ) =Fp)=F (22)
Oa
or
F= j dy(y —a)? = (a”> >1 (22b)
Oa

The latter is by use of the identity for the derivative of a logarithm. This
defines the new, unitless information scalar F. In general, it is a functional
of PDF p. Its unitless nature is easily verified. We note that it is always at

least value unity.
At this point, it is not clear why F should be regarded as an informa-

tion. It has not, e.g., been related to an error measure or a signal/noise
ratio. This will be remedied in Sections 2.2-2.3.
Consider the case

y=a+x, p(yla)=p(y—a) (23)

of Galilean invariance for the PDF. Equation (22b) becomes

Fp=[aex(2)31 p=ptn) (24)

Note that this may be expressed in the alternative forms

N
F(g%) =4 j dxx:‘(%)z | (26)

Comparison of Egs. (24) and (10) shows that the difference between the
Fisher information I and information F is the factor x2. This cancels the
units oc 1/x? of 1, making F unitless as required.
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Derivations (17)—(26) tacitly assumed a continuously differentiable
PDF p present. For a discrete probability law P(y,|a) similar results
follow, integrals replaced by sums. Equation (24) directly becomes

F=([0u-a g 20 o] ) @)

[We trust that the reader will not confuse the usual notation y, for a dis-
crete random variable with the data notation y, mentioned in Eq. (1) and
elsewhere. The two notations are never used together. ]

2.2. Examples of F for Various PDFs

As we have seen, F is a unitless number for any PDF. It is usual to
attach a fictitious unit to a unitless quantity, so as to identify what kind of
quantity (in this case, what type of information) it is. We propose calling
this unit the “stam,” in honor of a pioneer worker® in the field of
parameter estimation.

In Table I, the values of F for some elementary scalar laws p(y |a),
a the mean, are displayed. All other parameters, such as o in the normal
law case, are arbitrary and fixed. Since the symmetric Cauchy case (with
parameter b) has an intrinsic a of zero, the PDF was shifted to a finite

Table 1. Information F and S/N Ratio for Various PDFs®

PDF law Fas (-) F value S/N=r
_Exponential {(y—a)*)/a* 9 stam 1
. (ya—a)*) / a
Geometric —m)—z— 10-r2 ;——+—1
N(a, o%) {(y—a)*>/o* 3 a/o
Poisson (yn—a)*/a? 3+(1/r%) Ja.
N L (ya—a)®) 6 (N+r?)? Na
Binomial N N =ay Nt N—a
(N) N*{(y—a)*)/4a* 3+(6/r%) VN2
4(y—a)*
Cauchy <—————————[b,+ (y—a)z]’> 3/2 0

* The mean value is a in all cases. Parameter N is used in a generic sense; N = number of trials
in the binomial case or N =number of degrees of freedom in the y* case.
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mean value a. The F values were computed using definitions (22a) and
(27), giving rise to the expectations shown in the second column. These
usually involve the fourth central moment of the PDF and are evaluated
in the third column. The PDFs in Table I are assumed to obey property -
(17) but not necessarily the Galilean property (23).

Table I shows that many PDF laws, such as the normal and exponen-
tial laws, have an F value that is a pure number, independent of the
parameter(s) of the law. For other laws, information F depends upon the
signal-to-noise (S/N) ratio r =a/o. This dependence is specified in the last
column in Table I in terms of the mean a and other parameters of the law.
This dependence upon r makes sense since r is unitless and, by its defini-

tion, F must be unitless.
In this dependence upon the S/N, F resembles the information of

Shannon, which often depends (logarithmically) upon S/N. On the other
hand, except for the extra factor x? in Eqs. (25) and (26), F would be the
Fisher information. Hence, F occupies a niche somewhere between Fisher
information and Shannon information. Furthermore, like the Fisher variety,
F is a measure of estimation error and data error. These are shown in

Sections 2.3 and 2.5, respectively.

The Fisher information 7 for each PDF in the table turns out to be .
value 1/02, the reciprocal of its variance, except for the shifted Cauchy case,
for which 7=1/2b% Note that all these Fisher values have definite units,

i.e., the reciprocal of the square of the units of y.

23. F from Fisher I for Logarithmic Transformation

Information F can also be shown to be the Fisher information for
logarithmically transformed noise. Assume that

y=a+x (28)

ie., one shift-added data value (4). Representation (10) for 7 is equivalent
to

dpx(x)/dx)z | 29)

I=J’ wp X(x)( Px(%)

Now do a transformation of random variable from x to u, where

u = exp(x/a) “(30)
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and ¢ is the standard deviation of x. Using (30) in (29) gives

_Lln Pu(u)\? |
I=> [a pU(u)<l+upU(u)> (31)

Squaring out the integrand and integrating term by term, we find that the
first term is 1 by normalization, the cross term gives —2 after an integra-
tion by parts, and the last term is F(py) by Eq. (25). Thus, Eq. (31)
becomes

I=K(px) =23 (Flpo) = 1) (32)

Since by its definition (10) >0, Eq. (32) verifies result (22) that F> 1.
Solving (32) for F gives '

Flpy)=1+0*l(pommv) (33)

showing that information F is linear in the Fisher information I for the

transformed variable.

Fisher information is called an “information” because it defines the
quality of the data as measured by the error e? of estimation given in
Eq. (5). We may now verify that F is likewise an information. By Egs. (5)

and (32),

2

g
e>—, F =1 34
o= Feo) (34)

Hence, the greater F is, the smaller is the estimation error, verifying that
F is an information.

2.4. F as a Fisher Information

Here we show that F for a PDF p is equivalent to the information /
for an associated PDF x2p. This will allow F to be used in place of I in the
EPI principle described previously. It will also allow conditions to be found
for which F obeys an “F-theorem” analogous to the Boltzmann H-theorem.

Given a PDF p(x), define an associated PDF p(x)=bx’p(x),
b=const. (b is needed merely for normalization purposes). From this we
see that :

(dﬁ/ﬁdx);bz[ﬂ%dﬁf+4p+4x(dp/dx)] (35)
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Assuming that j(x) obeys Galilean invariance, I obeys Eq. (10). Then by
Eq. (35)

I(5) = b? (F( p)+4+4] dxx(dp/dx)) (36)

after deleting the subscript and using normalization for p(x) and the defini-
tion (25) of F. Or

F(p) =I(b’xp)/b* (37)

after an integration by parts of the far-right integral in Eq. (36), and use of
normalization, shows that it cancels the term +4.

2.5. Information Matrix [F]

The definition (22a) of F is the scalar case of a more general informa-
tion matrix [F]. Assume that the data y are independent, and with one
measurement y, for each parameter value g,. This amounts to a square
data-parameter problem K = N. As in the derivation”) of the Fisher infor-

mation matrix, define a vector of length (N +1),

h—a

V= (y1—a1)0 In p/da,

. s h—a1=§ (38)
(yn—ay) @Inp/oay

Next, form (wT), the expectation of the outer product of v. This
becomes '

~ e7 M, 0 07

M~~~ "7"7777

0 | F.. . e=(e (39)
L

L0 _

Olnp(y|a)dlnp(y|a)

F, .= = — -
= Fp)= (= a) R DRI
after some algebra (see the Appendix). The value of element M, depends
upon the particular law p(y|a). Particular cases are M,,=1 for a Poisson
law and M,, = 2a for an exponential law (see the Appendix). Elements F,,,
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in (39) define an information matrix [ F] which is similar in form to the
Fisher information matrix (3). For our data scenario, the elements of F

may be evaluated,

F, 1 . 1 1
1 Fp 1 1
[F]=| 1 1 Fy 1 (40)
1 1. 1
L 1 1 . . . FKK...

all 1’s except for diag{F,.,} (see the Appendix). Each element F,, reverts
to the scalar information F(p) given by Eq. (25).

By its construction as an outer product, {vvT) is a positive-definite
matrix. Therefore the determinant of matrix (39) is positive. Expanding by
cofactors along the top row of (39) gives

e2 det[ F] — M2, Cof(F;) 20 (41)

More generally, the approach (38) onward can be taken with a top element
in vector v which is y, —a, =¢,. This permits us to replace subscripts 1 by
n in Eq. (41). The result is

ea>MLF,!,  ei={ed) (42)

The data error goes inversely with [F], verifying that [F] is indeed an
information quantity. This inequality may be compared with the Cramer—

Rao inequality (2).

3. TRANSFORMATION PROPERTIES OF F

Information F has some important invariance properties, next derived
and discussed.

-3.1. Invariance to Change of Scale

We continue with the independent data case of the preceding section.
Suppose that a new set of units is chosen for the parameters a, and data y,,
so that

Yn=Cpr2z,, a,=C,b,, C, = consts (43)
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Then
8, (Y) = Om= Ym— = Cp(Zn—b1m) (44)
Also, by elementary Jacobian theory®
p(y|a)= pz(z|b)det[J(z/y)]

where

N

det[J(z/y)] = [] (1/C,) (45)

nml]
is the Jacobian of the transformation (43). Equations (45) give

61np(yIa)_@lnpz(zIb)ab,,,___l_alnpz(zlb)

oa,  0b, 0a, C, 0b, (46)

by Egs. (43). Substituting Egs. (44) and (46) into the definition (39) of F,.,
gives ‘ ‘

1 91 b) 101 b
Fm(P)=<C,,,(z,,,—bm) Clza=ba) Z ngbz(zl )_E_ ng;(z] )>

0l b)ol
= {(m b aa— b TREEEI TR L)

=F,(pz) (47)

The information is the same in the new set of units.
It is noted that neither Fisher information / nor the Shannon entropy

H=—[dyp(y|a)In p(y |a) (48)

obeys this property. At the other extreme, the Shannon mutual information
S and the Kullback-Leibler entropy (KL) are invariant under any change
of coordinate system, even nonlinear ones.!'” However, this might be an
unnecessarily strong invariance property. From a measurement standpoint,
it is sufficient to require invariance only in transforming from x-space to
Fourier (momentum) u-space, or vice versa: the choice of measurement
space is arbitrary to the observer, and measurement spaces are generally
Fourier conjugate spaces. A price paid for the very strong invariance
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properties obeyed by informations S and KL is apparently that they cannot
be used in a variational principle for deriving the general PDF laws of
physics [except for those of statistical mechanics'!]. Informations / and F,
on the other hand, can be used for this purpose, as discussed below.

3.2. Invariance to Conjugate Space

The information scalar I was formed, at Eq. (11), as the trace of the
Fisher information matrix. The measurements were assumed to be inde-
pendent, in a scenario of one measurement per parameter a,, and with
Galilean invariance obeyed. Continuing with this measurement scenario,
we likewise form an associated information scalar & as the trace of the
elements F,, The latter are given in Eqgs. (39). The result is simply a sum
of information quantities (26),

nml

F=4 z j dx x (dq‘;i"))zsgr(qf,..., g2) (49)

[ Compare with Eq. (11) for 1]
As at Eq. (13), assume N =2 measurements, and pack (q,, g,) as the

real and imaginary parts, respectively, of a complex amplitude function .
Then Eq. (49) directly simplifies to

F =4 [ du x? |y'(x))? (50)

[compare with Eq. (14)]. We now use the Fourier relation (15) between
¥(x) and conjugate function ¢(u) to represent & in conjugate space.
Differentiating Eq. (15) gives

i
"(X)=—-——— | 4 ek 51
V(%) \/j;;,mf‘uﬂd’(”) (51)
Using this in Eq. (50) and interchanging orders of integration gives directly
4 ’ ] ’ ) —
F =i | dnudl) [ e o) [ dexteme—e (s2)

The last integral is —2nh36”(;1 — u) where d(u) is the Dirac delta function.
Using its sifting property in Eq. (52) gives

F =4 [ dundd) o @ L) (53)
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Integrating by parts yields
F=t [l uh) S (u) = [ du g + 412 (54)
du du
after evaluating the derivatives. Squaring out gives
Fla=[dup? |87+ [ du g+ [dup(@d*+4*9)  (55)

We now show that the third integral cancels the second.
An integration by parts shows that

[dud'(ug®) = — [ du $(ug™ + ¢*) (56)
Adding to this equation its complex conjugate gives |
[dup(pg*+9'%0)=—2 [ du 19— [du p(@d* +4*¢)  (5T)

The far-left and far-right hand terms are the same. This allows us to solve
for it. Placing it in Eq. (55) gives the desired result,

F=4[dup ¢l (58)

This equation and Eq. (50) are of the same form, showing that information
Z is invariant to transformation between conjugate spaces. [ We previously
showed, in Eqgs. (14) and (16), that Fisher information 7 does not have this
property.] Thus, measurements y made in either of the two spaces give rise
to the same form of information &, as required.

4. ESTIMATING PDFS USING FMIN PRINCIPLE

Consider a scenario where there are insufficient data to uniquely deter-
mine a PDF. Let the PDF obey Galilean invariance so that F obeys
Eq. (26). Then F increases with the gradient content of g(x). Hence, if F is
minimized through choice of g(x), it will produce a g(x) that has minimal
gradient content. Then g(x) is maximally smooth and, by p = g?, p(x) will
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be maximally smooth as well. A consequence is that p(x) is minimally
biased toward particular values of x. This is a desirable property for an
estimated PDF (see below). How, then, may F be minimized? :
As one possibility, F may be incorporated (see below) into the EPI
principle®? for deriving physical PDFs. That approach assumes prior
knowledge of the physical source that is strong enough to imply an exact

answer for the PDF. _
A second possibility, and the one that concerns us here, is to minimize

F subject to imprecise information, that is, prior knowledge that is not
sufficient (as above) to produce an exact answer for the PDF. It can only
be estimated, as opposed to the error-free derivation afforded by EPI. Any
estimated PDF should be minimally biased toward particular x values,
since such bias can often be artifactual. Hence, a smooth estimate is

desired.
Let the prior information about p(x) be in the form of expectations

dy= (k) = [ dx k(x) *(x),  m=1,, N (59)

where k,(x) is a known kernel function. Knowledge of such equalities inay
be built into the extremization approach by use of the Lagrange method of
undetermined multipliers.('® The result is a principle,

f dx x <%>2+ f A, J'dxk,,(x) g*(x) = min (603

nel

The factor 4 in F has been absorbed into the multipliers 4,. We call this
the FMIN principle. Some particular solutions of interest are found next.
Consider the important case where

k(x)=x""" | (61) -

so that the data d, are moments. Substituting Eq. (61) into principle (60)
and using the Euler-Lagrange solution gives a formal solution,

d (0&\ 0%
a(a7) 70 ()
dq 2 N
$=x2(—> + Y Ay (62b)
dx ne} ’

We carry through some particular solutions.
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Suppose that N=1. This represents the weakest level of constraint
information: a normalization constraint. The minimum obtained in F will
then be the absolute one. Substituting Eq. (62b) into (62a) gives a differen-
tial equation,

g +2xg —Ag=0, A=A, (63)
The solution that allows for normalization is**

g(x)=Ax""  p(x)=A’x" (64)
a=1/2, Xo X< X, a, Xg, X; =const

This is a monotonic, and therefore smooth, law as was required. Evaluating
A by the normalization requirement and substituting the resulting p(x) into
Eq. (25) gives F=4a? (independent of x, and x,). Since, by (64), the mini-
mum possible value of « is 1, this means that the minimum possible value
of F is unity [ verifying Eq. (22)]. We may note that this result holds even
in the limit as x,— 0 and x, — o0, ie, as the curve g(x) is allowed to
extend over the entire positive real line.

That the answer for p(x) with a,;, = 1 is a simple 1/x law is of interest.
Such a PDF is the only one that is invariant to a change of units.*) This
might have been expected since F is itself unitless, and the constraint of
normalization is the weakest one possible. The 1/x law has previously been
found*® to describe the occurrence of unrelated numbers (weights, lengths,
times, etc.) binned in a common histogram. Since the fundamental physical
constants are, by definition, the most unrelated numbers of all, they might
likewise be expected to follow the 1/x law. In fact, this is the case.(>'¥

A 1/x law has been suggested!®) to be the appropriate prior probabil-
ity law for defining a random variable about which nothing is known
except normalization and its positivity. Steps (60)—(64) amount to a deriva-
tion of this hypothesis. To our knowledge, (60) is the only variational
principle that naturally (under minimal constraints) gives rise to a 1/x law.

The 1/x* result followed from FMIN in the weakest possible constraint
case. This implies that, with stronger constraints, FMIN solutions will zend
toward 1/x* This is verified next.

Consider the case N =3, corresponding to constraints on normaliza-
tion, the first moment a, and the variance o2 In place of Eq. (63) we now
have the differential equation -

' X2q" +2xq' — A q— Ay xq— A, x%q=0 (65)
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The normalized solution that also obeys the three constraints is the y- (or
chi-square)-law

p(x) = AxPe™", x>0
N
A= <';z> / re), p=r-1 (66)
y=r%/a, = alo

[ Note: This assumes that a >0. If instead a<0, then the domain is x<0
and x is replaced by (—x) on the right-hand side.] The y-law answer is a
unimodal, smooth function, as required. For comparison, the answer p(x)
given by maximum entropy H or by EPI under the same constraint infor-
mation is the normal law.® This is a smooth law as well. Which solution
to choose is arbitrary, until other considerations are made. If, for example,
the user is convinced that the three constraints are sufficient to define the
PDF, then he should choose the EPI approach.

Solution (66) is a 1/x*-type law (64) modified by an exponential falloff.
This shows that the bias toward 1/x* spoken of above is a real, persistent
effect. Also, the dependence upon the given parameters a, o is only through
a and the signal/noise ratio r. Once again, signal/noise is a natural specifier
of F-theory.

5. USE OF & IN EPI PRINCIPLE

The key information quantity in the EPI principle is the Fisher trace
information 7 defined in Eq. (11). We show, next, that / may be replaced
by a particular choice of the F-trace information #. Comparing the g-form
expressions (11) for 7 and (49) for &#, and using identities (26) and (37),
shows that

1 I(qla ’qN) bzf(q /b2 21 9qN/b2 2) (67)

By the use of this identity, EPI may be reexpressed in terms of the new
information #. This is beneficial because of the favorable transformation
properties that # was previously found to have. The result is a revised EPI
principle based upon an information that is independent of the choice of
measurement space and of the units employed.
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6. BOLTZMANN F-THEOREM

It was recently found”) that, for temporally dependent PDFs p(x | t),
the Fisher information obeys an “I-theorem,” '

01/01<0, I=Ip) (68)

This indicates an increase in disorder (as measured by I) with time and is
analogous to the Boltzmann H-theorem. The proviso to (68) is that p obey
the Fokker-Planck differential equation. Then the correspondence (37)
between I and F allows us to state an “F-theorem,”

oF/ot<0, F=F(p) | (69)

provided that the associated PDF j= x?p obeys the Fokker-Planck equa-
tion. Result (69) indicates that F is a physical measure of disorder.

7. SUMMARY

A unitless variant F on Fisher information was found to arise out of
an approach (17)-(22) analogous to the usual derivation of the Cramer-
Rao inequality and Fisher information. This gives the scalar (single datum)
version of F. Correspondingly, an F-information matrix (39) or (40) arises
out of a multiple-data scenario. This follows an approach (38)—(39)
analogous to the usual derivation of the Fisher information matrix.
Another result of interest is the error inequality (42), analogous to the

Cramer-Rao inequality.
Information F is computed for various PDFs, as given in Table 1. The

F value for one-parameter laws are often pure numbers (e.g., F= 3 stam for
a normal law). For multiple-parameter laws, F depends upon the S/N ratio

(a unitless quantity).
Information F is related to the Fisher information 7 in certain direct

uways. For example, F is linearly related to / [Eq. (33)] when the added

noise x in Eq. (28) is expressed as the logarithm of an associated random
variable. Also, F for a PDF p equals 7 for an associated PDF proportional
to x*p [Eq. (37)].

The information matrix [ F] is found [ Egs. (43)-(47)] to be invariant
to a change of scale.

Information F may be used in a variational pnncxple (60), called
FMIN, for estimating an unknown PDF in the presence of insufficient
information. The PDF should obey Galilean invariance. The solution to
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FMIN under only the normalization constraint is a PDF (64) of the form
1/x**. The minimum obtained for F attains its absolute minimum value,
of 1, for the case a = 1/2. The resulting 1/x law is known to be invariant to
a linear change of scale, corroborating a property previously found for F.
Also this PDF has been proposed in the past to define the appropriate
prior probability for a number whose only known property is that of
positivity.'® Finally, this law defines the histogram of unrelated quantities,
such as masses, lengths, times, etc, and consequently describes the
histogram of the fundamental physical constants. !¢

The solution to FMIN under constraints of normalization and the first
two moments is a gamma- or chi-square law (66). This modifies the 1 [x*=
behavior previously found with an exponential dropoff. .

Information F obeys a Boltzmann F-theorem (69) provided that the
associated PDF x?p obeys the Fokker-Planck equation. Then F is a
measure of physical disorder, like entropy H.

Just as the trace of the Fisher information matrix is taken to define the
scalar information I, the trace of [ F] may be taken to define a scalar infor-
mation & Eq. (49)]. This information has the important property that its
representation in Fourier (e.g, momentum) space is the same as its
representation in direct (e.g., position) space [ compare Egs. (50) and (58)].
Finally, because of Eq. (37), EPI may be expressed in terms of the informa-
tion scalar & and, hence, in terms of an information that is of the same
form regardless of the (arbitrary) choice of measurement space.

APPENDIX: CALCULATION OF SOME MATRIX ELEMENTS

The aim is to compute the elements of {vv)T, with vector v given by
Eq. (38). This is in the presence of independent and unbiased data,

N
plyla)=]] p(y.|a,) (Ala)
nel
(ya) =a, (A1b)

Since vector v is of dimension (N x 1) the outer product matrix {vv™) is of
dimension N x N.

By sight, the (1, 1) element is {(y; —a,)?) = (&}) =e}.

The (1, 2) element is called M),. It is obvious that element M,, = M,,.
Directly from (38),

| 0l | ,
Ma=((n-apr LREX)_ () g p ZRERIB) (a2
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by independence (Al). We may now drop subscript 1. The answer for M,
depends specifically upon the form of the law p(y | a). For a Poisson law
p(y | a)=exp(—a)a’/y!, we have 8 In p/da=(y—a)/a so that, by (A2),

_M=1 | (A3)

[ The third central moment of the Poisson law is the mean.!'®] Or, for an
exponential law p(y|a) =a~'exp( — y/a), y=0, we have 0ln p/da=
(y —a)/a® then by (A2)

M12=M=2a (A4)

The general form for elements F,,, of [ F] as indicated in (39) directly
results from the outer product of vector v defined in Eq. (38). we now verify
that, under the independence conditions (Ala), (Alb) the elements of [ F]
are as given in (40). First consider the off-diagonal elements F,,,, m#n.
Expanding out the derivative of a logarithm and using independence effect
(Ala), definition (39) collapses into a product of one-dimensional integrals,

0Pn
an‘:FmFm Fn=fdyn da (yn—an)

Pn=p(ynla,) (A5)
We can express

0 0
aan J-dynynpn—an aan _[dynpn (A6)

F,=

By the unbiasedness property (Alb) the first integral is a,, and by nor-
malization the second integral is 1. Therefore, F,=1, so that by (A5)
F,, = 1. This verifies the off-diagonal elements in (40).

Going through the same procedure for the case m=n, the multiple
integral-mean in (39) collapses into a one-dimensional integral, )

2
Fru=[ @, (s la0a e (T2E2212) )

This is the same as the scalar answer (22a) and, in case (23) of Galilean
invariance for p,, readily goes over into the form (25).
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